Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Invest Dermatol ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582367

RESUMO

Chronic non-healing wounds negatively impact on quality of life and are a significant financial drain on health systems. The risk of infection that exacerbates co-morbidities in patients necessitates regular application of wound care. Understanding mechanisms underlying impaired wound healing are therefore a key priority to inform effective new generation treatments. Here, we demonstrate that 14-3-3-mediated suppression of signaling through ROCK is a critical mechanism that inhibits the healing of diabetic wounds. Accordingly, pharmacological inhibition of 14-3-3 by topical application of the sphingo-mimetic drug RB-11 to diabetic wounds on a mouse model of type II diabetes, accelerated wound closure more than two-fold relative to vehicle control, phenocopying our previous observations in 14-3-3ζ knockout mice. We also demonstrate that accelerated closure of the wounded epidermis by 14-3-3 inhibition causes enhanced signaling through the Rho-ROCK pathway and that the underlying cellular mechanism involves the efficient recruitment of dermal fibroblasts into the wound and the rapid production of extracellular matrix proteins to re-establish the injured dermis. Our observations that the 14-3-3/ROCK inhibitory axis characterizes impaired wound healing and that its suppression facilitates fibroblast recruitment and accelerated re-epithelialization suggest new possibilities for treating diabetic wounds by pharmacologically targeting this axis.

2.
Materials (Basel) ; 17(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38399044

RESUMO

Pseudomonas aeruginosa is one of the most common pathogens encountered in clinical wound infections. Clinical studies have shown that P. aeruginosa infection results in a larger wound area, inhibiting healing, and a high prevalence of antimicrobial resistance. Hydroxypyridinone-derived iron chelator Deferiprone (Def) and heme analogue Gallium-Protoporphyrin (GaPP) in a chitosan-dextran hydrogel (Chitogel) have previously been demonstrated to be effective against PAO1 and clinical isolates of P. aeruginosa in vitro. Moreover, this combination of these two agents has been shown to improve sinus surgery outcomes by quickly reducing bleeding and preventing adhesions. In this study, the efficacy of Def-GaPP Chitogel was investigated in a P. aeruginosa biofilm-infected wound murine model over 6 days. Two concentrations of Def-GaPP Chitogel were investigated: Def-GaPP high dose (10 mM Def + 500 µg/mL GaPP) and Def-GaPP low dose (5 mM Def + 200 µg/mL GaPP). The high-dose Def-GaPP treatment reduced bacterial burden in vivo from day 2, without delaying wound closure. Additionally, Def-GaPP treatment decreased wound inflammation, as demonstrated by reduced neutrophil infiltration and increased anti-inflammatory M2 macrophage presence within the wound bed to drive wound healing progression. Def-GaPP Chitogel treatment shows promising potential in reducing P. aeruginosa cutaneous infection with positive effects observed in the progression of wound healing.

3.
Nat Commun ; 14(1): 5546, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37684239

RESUMO

Chimeric antigen receptor (CAR)-T cell immunotherapy is a novel treatment that genetically modifies the patients' own T cells to target and kill malignant cells. However, identification of tumour-specific antigens expressed on multiple solid cancer types, remains a major challenge. P2X purinoceptor 7 (P2X7) is a cell surface expressed ATP gated cation channel, and a dysfunctional version of P2X7, named nfP2X7, has been identified on cancer cells from multiple tissues, while being undetectable on healthy cells. We present a prototype -human CAR-T construct targeting nfP2X7 showing potential antigen-specific cytotoxicity against twelve solid cancer types (breast, prostate, lung, colorectal, brain and skin). In xenograft mouse models of breast and prostate cancer, CAR-T cells targeting nfP2X7 exhibit robust anti-tumour efficacy. These data indicate that nfP2X7 is a suitable immunotherapy target because of its broad expression on human tumours. CAR-T cells targeting nfP2X7 have potential as a wide-spectrum cancer immunotherapy for solid tumours in humans.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Animais , Camundongos , Imunoterapia , Encéfalo , Mama , Membrana Celular , Modelos Animais de Doenças
4.
Pharmaceutics ; 15(3)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36986741

RESUMO

BACKGROUND: Electrospun fibers are widely studied in regenerative medicine for their ability to mimic the extracellular matrix (ECM) and provide mechanical support. In vitro studies indicated that cell adhesion and migration is superior on smooth poly(L-lactic acid) (PLLA) electrospun scaffolds and porous scaffolds once biofunctionalized with collagen. METHODS: The in vivo performance of PLLA scaffolds with modified topology and collagen biofunctionalization in full-thickness mouse wounds was assessed by cellular infiltration, wound closure and re-epithelialization and ECM deposition. RESULTS: Early indications suggested unmodified, smooth PLLA scaffolds perform poorly, with limited cellular infiltration and matrix deposition around the scaffold, the largest wound area, a significantly larger panniculus gape, and lowest re-epithelialization; however, by day 14, no significant differences were observed. Collagen biofunctionalization may improve healing, as collagen-functionalized smooth scaffolds were smallest overall, and collagen-functionalized porous scaffolds were smaller than non-functionalized porous scaffolds; the highest re-epithelialization was observed in wounds treated with collagen-functionalized scaffolds. CONCLUSION: Our results suggest that limited incorporation of smooth PLLA scaffolds into the healing wound occurs, and that altering surface topology, particularly by utilizing collagen biofunctionalization, may improve healing. The differing performance of the unmodified scaffolds in the in vitro versus in vivo studies demonstrates the importance of preclinical testing.

5.
Int J Mol Sci ; 24(1)2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36614239

RESUMO

Fundamental knowledge about cell-surface interactions can be applied in the development of wound dressings and scaffolds to encourage wounds to heal. As surfaces produced with acid-functionalised monomers encourage keratinocyte adhesion, proliferation and migration, whilst amine functionalisation enhances fibroblast proliferation and migration in vitro, standard care wound dressings were plasma-coated with either acrylic acid or allylamine and applied to 6 mm excisional wounds on the backs of mice to test their effectiveness in vivo. At day 3, the rate of wound healing was increased in mice treated with dressings that were plasma-coated with allylamine compared to uncoated dressings, with a significantly reduced wound area. However, healing may be impaired following prolonged treatment with allylamine-functionalised dressings, with delayed re-epithelialisation and increased cellularisation of the wound site at later timepoints. Acrylic acid functionalisation, however, offered no early improvement in wound healing, but wounds treated with these dressings displayed increased collagen deposition at day 7 post wounding. These results suggest that plasma polymerisation may allow for the development of new dressings which can enhance wound closure by directing cell behaviour, but that the application of these dressings may require a timed approach to enhance specific phases of the wound healing response.


Assuntos
Bandagens , Cicatrização , Camundongos , Animais , Acrilatos/farmacologia , Colágeno
6.
J Chromatogr A ; 1691: 463813, 2023 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-36709548

RESUMO

Over the past two decades significant technical advancement in the field of western blotting has been made possible through the utilization of microfluidic technologies. In this review we provide a critical overview of these advancements, highlighting the advantages and disadvantages of each approach. Particular attention is paid to the development of now commercially available systems, including those for single cell analysis. This review also discusses more recent developments, including algorithms for automation and/or improved quantitation, the utilization of different materials/chemistries, use of projection electrophoresis, and the development of triBlots. Finally, the review includes commentary on future advances in the field based on current developments, and the potential of these systems for use as point-of-care devices in healthcare.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Sistemas Automatizados de Assistência Junto ao Leito , Western Blotting , Automação
7.
Am J Physiol Cell Physiol ; 324(1): C29-C38, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36409176

RESUMO

Healing of cutaneous wounds is a fundamental process required to re-establish tissue integrity, repair skin barrier function, and restore skin homeostasis. Chronic wound infection, exacerbated by the growing development of resistance to conventional therapies, hinders the skin repair process and is a serious clinical problem affecting millions of people worldwide. In the past decade, the use of antimicrobial peptides (AMPs) has attracted increasing attention as a potential novel strategy for the treatment of chronic wound infections due to their unique multifaceted mechanisms of action, and AMPs have been demonstrated to function as potent host-defense molecules that can control microbial proliferation, modulate host-immune responses, and act as endogenous mediators of wound healing. To date over 3,200 AMPs have been discovered either from living organisms or through synthetic derivation, some of which have progressed to clinical trials for the treatment of burn and wound injuries. However, progress to routine clinical use has been hindered due to AMPs' susceptibility to wound and environmental factors including changes in pH, proteolysis, hydrolysis, oxidation, and photolysis. This review will discuss the latest research focused on the development and applications of AMPs for wound infections using the latest nanotechnological approaches to improve AMP delivery, and stability to present effective combinatorial treatment for clinical applications.


Assuntos
Peptídeos Antimicrobianos , Infecção dos Ferimentos , Humanos , Peptídeos Antimicrobianos/uso terapêutico , Pele , Infecção dos Ferimentos/tratamento farmacológico
8.
Int J Mol Sci ; 23(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36362441

RESUMO

There has been little understanding of acidification functionality in wound healing, highlighting the need to study the efficacy of wound acidification on wound closure and cellular activity in non-infected wounds. This study is focused on establishing the healing potential of wound acidification in non-infected wounds. Acidic buffers, constituting either phosphoric or citric acid, were employed to modify the physiological pH of non-infected full-thickness excisional murine wounds. Acidification of the wound by acidic buffers was found to be an effective strategy to improve wound healing. A significant improvement in wound healing parameters was observed as early as 2 days post-treatment with acidic buffers compared to controls, with faster rate of epithelialization, wound closure and higher levels of collagen at day 7. pH is shown to play a role in mediating the rate of wound healing, with acidic buffers formulated at pH 4 observed to stimulate faster recovery of wounded tissues than pH 6 buffers. Our study shows the importance of maintaining an acidic wound microenvironment at pH 4, which could be a potential therapeutic strategy for wound management.


Assuntos
Reepitelização , Cicatrização , Camundongos , Animais , Cicatrização/fisiologia , Colágeno , Concentração de Íons de Hidrogênio , Pele/lesões
9.
ACS Appl Mater Interfaces ; 14(46): 51744-51762, 2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36356210

RESUMO

Antibacterial treatment that provides on-demand release of therapeutics that can kill a broad spectrum of pathogens while maintaining long-term efficacy and without developing resistance or causing side effects is urgently required in clinical practice. Here, we demonstrate the development of a multistimuli-responsive hydrogel, prepared by cross-linking N-isopropylacrylamide with acrylic acid and loaded with ultrasmall silver nanoparticles (AgNPs), offering the on-demand release of Ag+ ions triggered by changes in the wound microenvironment. We demonstrate that this dual-responsive hydrogel is highly sensitive to a typical wound pH and temperature change, evidenced by the restricted release of Ag+ ions at acidic pH (<5.5) while significantly promoting the release in alkaline pH (>7.4) (>90% release). The pH-dependent release and antibacterial effect show minimal killing at pH 4 or 5.5 but dramatically activated at pH 7.4 and 10, eliminating >95% of the pathogens. The in vivo antibacterial efficacy and safety showed a high potency to clear Staphylococcus aureus wound infection while significantly accelerating the wound healing rate. This multifunctional hydrogel presents a promising bacteria-responsive delivery platform that serves as an on-demand carrier to not only reduce side effects but also significantly boost the antibacterial efficiency based on physiological needs. It offers great potential to improve the way wound infections are treated with direct clinical implications, providing a single platform for long-lasting application in wound management.


Assuntos
Nanopartículas Metálicas , Infecções Estafilocócicas , Infecção dos Ferimentos , Humanos , Hidrogéis/farmacologia , Staphylococcus aureus , Temperatura , Nanopartículas Metálicas/uso terapêutico , Prata/farmacologia , Cicatrização , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Infecções Estafilocócicas/tratamento farmacológico , Concentração de Íons de Hidrogênio , Infecção dos Ferimentos/tratamento farmacológico
10.
Cells ; 11(19)2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36230913

RESUMO

Macrophages are key immune cells that respond to infections, and modulate pathophysiological conditions such as wound healing. By possessing phagocytic activities and through the secretion of cytokines and growth factors, macrophages are pivotal orchestrators of inflammation, fibrosis, and wound repair. Macrophages orchestrate the process of wound healing through the transitioning from predominantly pro-inflammatory (M1-like phenotypes), which present early post-injury, to anti-inflammatory (M2-like phenotypes), which appear later to modulate skin repair and wound closure. In this review, different cellular and molecular aspects of macrophage-mediated skin wound healing are discussed, alongside important aspects such as macrophage subtypes, metabolism, plasticity, and epigenetics. We also highlight previous studies demonstrating interactions between macrophages and these factors for optimal wound healing. Understanding and harnessing the activity and capability of macrophages may help to advance new approaches for improving healing of the skin.


Assuntos
Macrófagos , Cicatrização , Citocinas/metabolismo , Humanos , Inflamação/metabolismo , Macrófagos/metabolismo , Pele , Cicatrização/fisiologia
11.
Cells ; 11(18)2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36139355

RESUMO

The restoration of an intact epidermal barrier after wound injury is the culmination of a highly complex and exquisitely regulated physiological process involving multiple cells and tissues, overlapping dynamic events and protein synthesis and regulation. Central to this process is the cytoskeleton, a system of intracellular proteins that are instrumental in regulating important processes involved in wound repair including chemotaxis, cytokinesis, proliferation, migration, and phagocytosis. One highly conserved family of cytoskeletal proteins that are emerging as major regulators of actin and microtubule nucleation, polymerization, and stabilization are the formins. The formin family includes 15 different proteins categorized into seven subfamilies based on three formin homology domains (FH1, FH2, and FH3). The formins themselves are regulated in different ways including autoinhibition, activation, and localization by a range of proteins, including Rho GTPases. Herein, we describe the roles and effects of the formin family of cytoskeletal proteins on the fundamental process of wound healing and highlight recent advances relating to their important functions, mechanisms, and regulation at the molecular and cellular levels.


Assuntos
Actinas , Proteínas dos Microfilamentos , Actinas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Forminas , Proteínas dos Microfilamentos/metabolismo , Estrutura Terciária de Proteína , Cicatrização , Proteínas rho de Ligação ao GTP/metabolismo
12.
Int J Mol Sci ; 23(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35806191

RESUMO

Strategies that alter the pH of wounds to improve healing outcomes are an emerging area of interest. Currently, there is limited understanding of the effect of hydrogen (H+) on the functionality of skin cells during proliferation and migration, highlighting the need for research to determine the effect of pH during wound healing. This study aimed to determine the effect of acidification on the metabolic activity and migration of human immortalized keratinocytes (HaCaT) and human foreskin fibroblasts (HFF). In vitro models were used with phosphoric and citric acid buffers at a pH range between 3 and 7. Our results showed that cells were more viable in buffers with low rather than high ionic strength. A time-dependent effect of the acidification treatment was also observed with cell metabolic activity varying with treatment duration and frequency. Our results showed that a 24 h treatment and subsequent resting phase significantly improved cell proliferation and migration. This in vitro study is the first to establish a correlation between the role of acidic pH, molarity and treatment regimen in cellular activity. Our data demonstrated a positive effect of acidic pH on cell metabolic activity and migration rate, suggesting a clinical potential in indications such as wound healing.


Assuntos
Pele , Cicatrização , Movimento Celular , Proliferação de Células , Fibroblastos , Humanos , Queratinócitos/metabolismo , Pele/lesões
13.
Cells ; 11(14)2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35883634

RESUMO

TLR4 plays a pivotal role in orchestrating inflammation and tissue repair. Its expression has finally been balanced to initiate the early, robust immune response necessary for efficient repair without excessively amplifying and prolonging inflammation, which impairs healing. Studies show Flightless I (Flii) is an immunomodulator that negatively regulates macrophage TLR4 signalling. Using macrophages from Flii+/-, WT, and FliiTg/Tg mice, we have shown that elevated Flii reduces early TLR4 surface expression, delaying and reducing subsequent TNF secretions. In contrast, reduced Flii increases surface TLR4, leading to an earlier robust TNF peak. In Flii+/- mice, TLR4 levels peak earlier during wound repair, and overall healing is accelerated. Fewer neutrophils, monocytes and macrophages are recruited to Flii+/- wounds, leading to fewer TNF-positive macrophages, alongside an early peak and a robust shift to M2 anti-inflammatory, reparative Ym1+ and IL-10+ macrophages. Importantly, in diabetic mice, high Flii levels are found in plasma and unwounded skin, with further increases observed in their wounds, which have impaired healing. Lowering Flii in diabetic mice results in an earlier shift to M2 macrophages and improved healing. Overall, this suggests Flii regulation of TLR4 reduces early inflammation and decreases the M2 macrophage phenotype, leading to impaired healing.


Assuntos
Proteínas dos Microfilamentos , Receptor 4 Toll-Like , Transativadores , Cicatrização , Animais , Diabetes Mellitus Experimental , Inflamação/genética , Inflamação/metabolismo , Macrófagos/metabolismo , Camundongos , Proteínas dos Microfilamentos/genética , Proteínas dos Microfilamentos/metabolismo , Receptor 4 Toll-Like/metabolismo , Transativadores/genética , Transativadores/metabolismo , Cicatrização/genética , Cicatrização/fisiologia
14.
APMIS ; 130(7): 383-396, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35394091

RESUMO

Cellular mechanisms and/or microbiological interactions which contribute to chronic diabetes related foot ulcers (DRFUs) were explored using serially collected tissue specimens from chronic DRFUs and control healthy foot skin. Total RNA was isolated for next-generation sequencing. We found differentially expressed genes (DEGs) and enriched hallmark gene ontology biological processes upregulated in chronic DRFUs which primarily functioned in the host immune response including: (i) Inflammatory response; (ii) TNF signalling via NFKB; (iii) IL6 JAK-STAT3 signalling; (iv) IL2 STAT5 signalling and (v) Reactive oxygen species. A temporal analysis identified RN7SL1 signal recognition protein and IGHG4 immunoglobulin protein coding genes as being the most upregulated genes after the onset of treatment. Testing relative temporal changes between healing and non-healing DRFUs identified progressive upregulation in healed wounds of CXCR5 and MS4A1 (CD20), both canonical markers of lymphocytes (follicular B cells/follicular T helper cells and B cells, respectively). Collectively, our RNA-seq data provides insights into chronic DRFU pathogenesis.


Assuntos
Diabetes Mellitus , Pé Diabético , Pé Diabético/genética , Humanos , Pele , Cicatrização/genética
15.
Curr Pharm Des ; 28(9): 711-726, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35345993

RESUMO

Wound healing is a complex and dynamic process that requires intricate synchronization between multiple cell types within appropriate extracellular microenvironment. Wound healing process involves four overlapping phases in a precisely regulated manner, consisting of hemostasis, inflammation, proliferation, and maturation. For an effective wound healing, all four phases must follow in a sequential pattern within a time frame. Several factors might interfere with one or more of these phases in healing process, thus causing improper or impaired wound healing resulting in non-healing chronic wounds. The complications associated with chronic non-healing wounds, along with the limitations of existing wound therapies, have led to the development and emergence of novel and innovative therapeutic interventions. Nanotechnology presents unique and alternative approaches to accelerate the healing of chronic wounds by the interaction of nanomaterials during different phases of wound healing. This review focuses on recent innovative nanotechnology-based strategies for wound healing and tissue regeneration based on nanomaterials, including nanoparticles, nanocomposites and scaffolds. The efficacy of the intrinsic therapeutic potential of nanomaterials (including silver, gold, zinc oxide, copper, cerium oxide, etc.) and the ability of nanomaterials as carriers (liposomes, hydrogels, polymeric nanomaterials, nanofibers) and therapeutic agents associated with wound-healing applications have also been addressed. The significance of these nanomaterial-based therapeutic interventions for wound healing needs to be highlighted to engage researchers and clinicians towards this new and exciting area of bio-nanoscience. We believe that these recent developments will offer researchers an updated source for the use of nanomaterials as an advanced approach to improve wound healing.


Assuntos
Nanopartículas , Nanoestruturas , Sistemas de Liberação de Medicamentos , Humanos , Nanotecnologia/métodos , Cicatrização
16.
Artigo em Inglês | MEDLINE | ID: mdl-35074864

RESUMO

Wound healing requires a complex cascade of highly controlled and conserved cellular and molecular processes. These involve numerous cell types and extracellular matrix molecules regulated by the actin cytoskeleton. This microscopic network of filaments is present within the cytoplasm of all cells and provides the shape and mechanical support required for cell movement and proliferation. Here, an overview of the processes of wound healing are described from the perspective of the cell in relation to the actin cytoskeleton. Key points of discussion include the role of actin, its binding proteins, signaling pathways, and events that play significant roles in the phases of wound healing. The identification of cytoskeletal targets that can be used to manipulate and improve wound healing is included as an emerging area of focus that may inform future therapeutic approaches to improve healing of complex wounds.


Assuntos
Actinas , Citoesqueleto , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Movimento Celular , Cicatrização
17.
ACS Appl Mater Interfaces ; 14(1): 390-403, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-34935355

RESUMO

Silver-based nano-antibiotics are rapidly developing as promising alternatives to conventional antibiotics. Ideally, to remain potent against a wide range of drug-resistant and anaerobic bacteria, silver-based nano-antibiotics should easily penetrate through the bacterial cell walls and actively release silver ions. In this study, highly monodispersed, ultrasmall (<3 nm), polycationic silver nanoclusters (pAgNCs) are designed and synthesized for the elimination of a range of common Gram-negative and Gram-positive pathogens and their corresponding established and matured biofilms, including those composed of multiple species. The pAgNCs also show greatly enhanced antibacterial efficacy against anaerobic bacteria such as Fusobacterium nucleatum and Streptococcus sanguinis. These results demonstrate that the cationic nature facilitates better penetration to the bacterial cell membrane while the presence of a high percentage (>50%) of silver ions (i.e., Ag+ nanoreservoirs) on the cluster surface maintains their efficiency in both aerobic and anaerobic conditions. Significantly, the pAgNCs showed a strong capacity to significantly delay the development of bacterial resistance when compared to similar-sized negatively charged silver nanoparticles or conventional antibiotics. This study demonstrates a novel design strategy that can lay the foundation for the development of future highly potent nano-antibiotics effective against a broad spectrum of pathogens and biofilms needed in many everyday life applications and industries.


Assuntos
Antibacterianos/farmacologia , Materiais Biocompatíveis/farmacologia , Nanopartículas/química , Polieletrólitos/farmacologia , Prata/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/química , Biofilmes/efeitos dos fármacos , Fusobacterium nucleatum/efeitos dos fármacos , Íons/química , Íons/farmacologia , Teste de Materiais , Testes de Sensibilidade Microbiana , Tamanho da Partícula , Polieletrólitos/química , Prata/química , Streptococcus sanguis/efeitos dos fármacos
19.
Int J Mol Sci ; 22(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34948000

RESUMO

Cutaneous squamous cell carcinoma (cSCC) accounts for 25% of cutaneous malignancies diagnosed in Caucasian populations. Surgical removal in combination with radiation and chemotherapy are effective treatments for cSCC. Nevertheless, the aggressive metastatic forms of cSCC still have a relatively poor patient outcome. Studies have linked actin cytoskeletal dynamics and the Wnt/ß-catenin signaling pathway as important modulators of cSCC pathogenesis. Previous studies have also shown that the actin-remodeling protein Flightless (Flii) is a negative regulator of cSCC. The aim of this study was to investigate if the functional effects of Flii on cSCC involve the Wnt/ß-catenin signaling pathway. Flii knockdown was performed using siRNA in a human late stage aggressive metastatic cSCC cell line (MET-1) alongside analysis of Flii genetic murine models of 3-methylcholanthrene induced cSCC. Flii was increased in a MET-1 cSCC cell line and reducing Flii expression led to fewer PCNA positive cells and a concomitant reduction in cellular proliferation and symmetrical division. Knockdown of Flii led to decreased ß-catenin and a decrease in the expression of the downstream effector of ß-catenin signaling protein SOX9. 3-Methylcholanthrene (MCA)-induced cSCC in Flii overexpressing mice showed increased markers of cancer metastasis including talin and keratin-14 and a significant increase in SOX9 alongside a reduction in Flii associated protein (Flap-1). Taken together, this study demonstrates a role for Flii in regulating proteins involved in cSCC proliferation and tumor progression and suggests a potential role for Flii in aggressive metastatic cSCC.


Assuntos
Carcinoma de Células Escamosas/genética , Proteínas dos Microfilamentos/genética , Neoplasias Cutâneas/genética , Transativadores/genética , Regulação para Cima , Via de Sinalização Wnt , Animais , Carcinoma de Células Escamosas/induzido quimicamente , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Metilcolantreno/efeitos adversos , Camundongos , Neoplasias Cutâneas/induzido quimicamente
20.
Biomedicines ; 9(9)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-34572368

RESUMO

Biofilm-associated infections are a major cause of impaired wound healing. Despite the broad spectrum of anti-bacterial benefits provided by silver nanoparticles (AgNPs), these materials still cause controversy due to cytotoxicity and a lack of efficacy against mature biofilms. Herein, highly potent ultrasmall AgNPs were combined with a biocompatible hydrogel with integrated synergistic functionalities to facilitate elimination of clinically relevant mature biofilms in-vivo combined with improved wound healing capacity. The delivery platform showed a superior release mechanism, reflected by high biocompatibility, hemocompatibility, and extended antibacterial efficacy. In vivo studies using the S. aureus wound biofilm model showed that the AgNP hydrogel (200 µg/g) was highly effective in eliminating biofilm infection and promoting wound repair compared to the controls, including silver sulfadiazine (Ag SD). Treatment of infected wounds with the AgNP hydrogel resulted in faster wound closure (46% closure compared to 20% for Ag SD) and accelerated wound re-epithelization (60% for AgNP), as well as improved early collagen deposition. The AgNP hydrogel did not show any toxicity to tissue and/or organs. These findings suggest that the developed AgNP hydrogel has the potential to be a safe wound treatment capable of eliminating infection and providing a safe yet effective strategy for the treatment of infected wounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...